Cart (Loading....) | Create Account
Close category search window

Modal response and frequency shift of the cantilever in a noncontact atomic force microscope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, Wei L. ; The University of Michigan, Ann Arbor, Michigan 48109 ; Hu, S.Jack

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The force-sensing cantilever in a noncontact atomic force microscope is a continuous system with infinite number of eigenmodes. Although the frequently used point mass model was found sufficient in many cases, its conditions for validity and the insights on how higher eigen-modes could affect the selection of operation parameters were not established. In this letter, we formulate the cantilever motion using modal response analysis, a powerful means enabling an efficient numerical solution and a first order analytical solution. The origins and impacts of the higher eigenfrequency oscillation are then investigated, which sheds lights on achieving optimal imaging conditions.

Published in:

Applied Physics Letters  (Volume:87 ,  Issue: 18 )

Date of Publication:

Oct 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.