Cart (Loading....) | Create Account
Close category search window

Distributed source-destination synchronization using inband clock distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung Sheng Li ; IBM Thomas J. Watson Res. Center, Hawthorne, NY, USA ; Ofek, Y.

This paper presents a new distributed methodology for source destination synchronization for interactive teleconferencing. The method is based on a reference clock, which is synthesized from a distributed global clock. The global clock is generated by periodically exchanging inband synchronization signals with neighboring nodes. The timing jitter achieved with this method can be arbitrarily close to the jitter obtained by the centralized synchronous methods which usually use an out-of-band, hard-wired reference clock. The global clock synchronization algorithm, used in this work, guarantees frequency locking of all the network nodes to the slowest clock in the system. As a result, the slowest clock can be used as an implicit reference clock for source-destination synchronization protocols, such as synchronous frequency encoding technique (SFET) and synchronous residual time stamp (SRTS). This inband synchronization method does not require the explicit knowledge of which clock is actually the slowest in the system. Therefore, if the slowest clock fails, then another clock on a different node will be the slowest, and the nodes will use it as a reference clock for the source-destination synchronization protocol. The existing out-of-band reference clock techniques do not have this strong fault tolerant property

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:14 ,  Issue: 1 )

Date of Publication:

Jan 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.