By Topic

Air-bridged lateral growth of an Al0.98Ga0.02N layer by introduction of porosity in an AlN buffer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, T. ; EPSRC National Centre for III-V Technologies, Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom ; Bai, J. ; Parbrook, P.J. ; Cullis, A.G.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We demonstrated air-bridged lateral growth of an Al0.98Ga0.02N layer with significant dislocation reduction by introduction of a porous AlN buffer underneath via metalorganic chemical vapor deposition. By modifying growth conditions, a porous AlN layer and an atomically flat AlN layer have been obtained for comparison, confirmed by atomic force microscopy. An Al0.98Ga0.02N layer was subsequently grown on both the porous AlN layer and the atomically flat AlN layer under identical conditions. Significant dislocation reduction was achieved for the Al0.98Ga0.02N layer grown on the porous AlN buffer layer, compared to the layer grown on the atomically flat AlN layer, as observed by transmission electron microscopy. Clear bubbles from the layer grown on the porous AlN buffer layer have been observed, while in contrast, there was not any bubble from the layer on the flat AlN buffer, confirming the mechanism of lateral growth for dislocation reduction. Asymmetric x-ray diffraction studies also indicated that the crystal quality was dramatically improved using the porous AlN buffer layer.

Published in:

Applied Physics Letters  (Volume:87 ,  Issue: 15 )