Cart (Loading....) | Create Account
Close category search window

Identification of image and blur parameters in frequency domain using the EM algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anarim, E. ; Dept. of Electr. & Electron. Eng., Bogazici Univ., Istanbul, Turkey ; Ucar, H. ; Istefanopulos, Y.

We extend a method presented previously, which considers the problem of the semicausal autoregressive (AR) parameter identification for images degraded by observation noise only. We propose a new approach to identify both the causal and semicausal AR parameters and blur parameters without a priori knowledge of the observation noise power and the PSF of the degradation. We decompose the image into 1-D independent complex scalar subsystems resulting from the vector state-space model by using the unitary discrete Fourier transform (DFT). Then, by applying the expectation-maximization (EM) algorithm to each subsystem, we identify the AR model and blur parameters of the transformed image. The AR parameters of the original image are then identified by using the least squares (LS) method. The restored image is obtained as a byproduct of the EM algorithm

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Jan 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.