By Topic

VOIR: a volumetric image reconstruction algorithm based on Fourier techniques for inversion of the 3-D Radon transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dusaussoy, N.J. ; Adv. Res. & Appl. Corp, Sunnyvale, CA, USA

A novel volumetric image reconstruction algorithm known as VOIR is presented for inversion of the 3-D Radon transform or its radial derivative. The algorithm is a direct implementation of the projection slice theorem for plane integrals. It generalizes one of the most successful methods in 2-D Fourier image reconstruction involving concentric-square rasters to 3-D; in VOIR, the spectral data, which is calculated by fast Fourier techniques, lie on concentric cubes and are interpolated by a bilinear method on the sides of these concentric cubes. The algorithm has great computational advantages over filtered-backprojection algorithms; for images of side dimension N, the numerical complexity of VOIR is O(N3 log N) instead of O(N 4) for backprojection techniques. An evaluation of the image processing performance is reported by comparison of reconstructed images from simulated cone-beam scans of a contrast and resolution test object. The image processing performance is also characterized by an analysis of the edge response from the reconstructed images

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 1 )