By Topic

On the magnetic mirror effect in Hall thrusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keidar, M. ; Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109 ; Boyd, I.D.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The magnetic mirror effect is studied in the channel of a Hall thruster. It is shown that gradients in magnetic field affect the presheath structure and electric potential distribution. The length of the radial presheath region decreases in the presence of a magnetic field gradient. The two-dimensional potential shape can be affected by proper choice of the magnetic mirror ratio. In particular, it is possible to obtain a concave shape of the potential profile in the channel even in the case of a primarily radial magnetic field. This, in turn, can be used to efficiently control the ion dynamics in the acceleration region.

Published in:

Applied Physics Letters  (Volume:87 ,  Issue: 12 )