Cart (Loading....) | Create Account
Close category search window
 

Image compression using wavelet transform and multiresolution decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Averbuch, A. ; Sch. of Math. Sci., Tel Aviv Univ., Israel ; Lazar, D. ; Israeli, Moshe

Schemes for image compression of black-and-white images based on the wavelet transform are presented. The multiresolution nature of the discrete wavelet transform is proven as a powerful tool to represent images decomposed along the vertical and horizontal directions using the pyramidal multiresolution scheme. The wavelet transform decomposes the image into a set of subimages called shapes with different resolutions corresponding to different frequency bands. Hence, different allocations are tested, assuming that details at high resolution and diagonal directions are less visible to the human eye. The resultant coefficients are vector quantized (VQ) using the LGB algorithm. By using an error correction method that approximates the reconstructed coefficients quantization error, we minimize distortion for a given compression rate at low computational cost. Several compression techniques are tested. In the first experiment, several 512×512 images are trained together and common table codes created. Using these tables, the training sequence black-and-white images achieve a compression ratio of 60-65 and a PSNR of 30-33. To investigate the compression on images not part of the training set, many 480×480 images of uncalibrated faces are trained together and yield global tables code. Images of faces outside the training set are compressed and reconstructed using the resulting tables. The compression ratio is 40; PSNRs are 30-36. Images from the training set have similar compression values and quality. Finally, another compression method based on the end vector bit allocation is examined

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Jan 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.