Cart (Loading....) | Create Account
Close category search window

Electro-optically tunable photonic crystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schmidt, M. ; Hamburg University of Technology, Materials in Electrical Engineering and Optics, Eissendorfer Str. 38, D-21073 Hamburg, Germany ; Eich, M. ; Huebner, U. ; Boucher, R.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We report on electro-optical modulation with a sub-1-V sensitivity in a photonic crystal slab waveguide resonator which contains a nanostructured second-order nonlinear optical polymer. The electro-optical susceptibility in the core was induced by high electric-field poling. A square lattice of holes carrying a linear defect was transferred into the slab by electron-beam lithography and reactive ion etching, creating a photonic crystal slab-based resonator. Applying an external electric modulation voltage to electrodes leads to a linear electro-optical shift of the resonance spectrum and thus to a modulation of the transmission at a fixed wavelength based on the electronic displacement polarization in a noncentrosymmetric medium (Pockels effect). This effect is therefore inherently faster than other reported electro-optic modulation effects in nanophotonics.

Published in:

Applied Physics Letters  (Volume:87 ,  Issue: 12 )

Date of Publication:

Sep 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.