By Topic

Dynamics of large constrained nonlinear systems-a taxonomy theory [power system stability]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Venkatasubramanian, V. ; Dept. of Electr. & Comput. Eng., Washington State Univ., Pullman, WA, USA ; Schattler, H. ; Zaborsky, J.

This paper provides an overview of the taxonomy theory which has been proposed as a fundamental platform for solving practical stability related problems in large constrained nonlinear systems such as the electric power system. The theory reveals a two-level intertwined cellular nature of the constrained system dynamics which serves as a unifying structure, a taxonomy, for analyzing nonlinear phenomena in large system models. These broadly divide into the state space aspects (related to dynamic stability issues among others) and the parameter space aspects (connected with bifurcation phenomena among others). In the state-space formulation, the boundary of the region of attraction for the operating point is shown (under certain Morse-Smale like assumptions) to be composed of stable manifolds of certain anchors and portions of the singularity surface. Such boundary characterization provides the foundation for rigorous Lyapunov theoretic transient stability methods. In the parameter space analysis, the feasibility region which is bounded by the feasibility boundary provides a safe opening region for guaranteeing local stability at the equilibrium under slow parametric variations. The feasibility boundary where the operating point undergoes loss of local stability is characterized in the form of three principal bifurcations including a new bifurcation called the singularity induced bifurcation

Published in:

Proceedings of the IEEE  (Volume:83 ,  Issue: 11 )