By Topic

Ultrasound simulation of complex flow velocity fields based on computational fluid dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Swillens, A. ; Inst. of Biomed. Technol., Ghent Univ., Ghent ; Lovstakken, L. ; Kips, J. ; Torp, H.
more authors

In this work, a simulation environment for the development of flow-related ultrasound algorithms is presented. Ultrasound simulations of realistic Doppler signals require accurate modeling of blood flow. Instead of using analytically described flow behavior, complex blood movement can be derived from velocity fields obtained with computational fluid dynamics (CFD). By further modeling blood as a collection of point scatterers, resulting RF-signals can be efficiently retrieved using an existing ultrasound simulation model. The main aim of this paper is to elaborate on creating CFD-based phantoms for ultrasound simulations. The coupling of a computed flow field with an ultrasound model offers flexible control of flow and ultrasound imaging parameters, beneficial for improving and developing imaging algorithms. The proposed method was validated in a straight tube with a stationary parabolic velocity profile and further demonstrated by an eccentrically stenosis carotid bifurcation. The estimated flow velocities are in good agreement with the CFD reference, both for color flow imaging and pulsed-wave doppler simulations. The presented method can also be extended to include wall mechanics simulations in future work.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:56 ,  Issue: 3 )