By Topic

Breast ultrasound image improvement by pixel compounding of compression sequence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zhi Yang ; Dept. of Radiol., Univ. of Michigan, Ann Arbor, MI ; Sinha, S.P. ; Booi, R.C. ; Roubidoux, M.A.
more authors

Pixel compounding is a technique that synthesizes the information of an image sequence involving slow decorrelation of the speckle to form a detail-recovered and speckle reduced image. To avoid extra data acquisition time and patient exposure, reuse of the existing data is desirable. In the procedure of elasticity imaging, a set of B-mode images with slight changes due to deformation is produced, which provides an ideal input for the pixel compounding. The improvement in image quality is evaluated quantitatively using a figure-of-merit (FOM) that indicates the quality of boundary information recovery and the contrast-to-noise ratio (CNR) over the phantom images. The increase in average CNR is from 0.4 in the original images to 0.8 in the pixel compounded images. The improvement in average FOM is from 0.15 to more than 0.5 on a scale of 0 to 1. In vivo results with a breast cyst, a fibroadenoma, and a breast cancer are also presented and the image quality improvement is subjectively evaluated. The results suggest that B-mode breast images from compression procedures are suitable data for pixel compounding, and that a speckle-reduced and detail-recovered or detail-maintained image can be produced. The improved imaging may provide alternative or better information for detection and diagnosis. A similar approach could be extended to elasticity imaging with other modalities.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:56 ,  Issue: 3 )