By Topic

A Neural-Networks-Based Adaptive Disturbance Rejection Method and Its Application to the Control of Hard Disk Drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jason Levin ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA ; NÉstor O. Perez-Arancibia ; Petros A. Ioannou ; Tsu-Chin Tsao

This paper presents a neural-networks-based disturbance rejection adaptive scheme for dealing with repeatable and nonrepeatable runout simultaneously. The effectiveness of this method is demonstrated empirically on a commercial hard disk drive where the adaptive disturbance rejector is added to a baseline linear time-invariant (LTI) controller. The adaptive scheme can be broken into two subsystems: one subsystem is designed to suppress the repeatable runout (RRO) and the other to attenuate the residual disturbance and nonrepeatable runout (NRRO) by the use of radial basis functions. Two different methods for RRO suppression are employed in conjunction with the neural-networks-based NRRO rejector. The first one is an adaptive feedforward disturbance rejection scheme. The second is a repetitive controller. In both cases the neural modeled disturbance rejector is adapted online further increasing the track-following performance by as much as 6.4%. Experimental results of the schemes at various locations of the hard drive are included to demonstrate the general applicability of the approach on commercial drives. The total reduction of the error during track-following is measured to be as much as 25.4% respect to the baseline LTI controller.

Published in:

IEEE Transactions on Magnetics  (Volume:45 ,  Issue: 5 )