Cart (Loading....) | Create Account
Close category search window
 

Full Strain Tensor Treatment of Fiber Bragg Grating Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Muller, M.S. ; Inst. for Meas. Syst. & Sensor Technol., Tech. Univ. Munchen, Munich ; Hoffmann, L. ; Sandmair, Andreas ; Koch, A.W.

Embedded fiber Bragg gratings can be subjected to arbitrary states of strain including shear strain. Such perturbations can cause coupling between polarization modes. Coupled-mode theory in Bragg gratings so far neglected this effect and only considered forward-backward coupling. Polarization mode coupling within a Bragg grating leads to interdependencies between Bragg reflection peaks which have so far been unaddressed. We formulate a full strain tensor treatment of fiber Bragg gratings, considering the coupling of the polarization modes within the grating. We give an approximation for the coupling coefficients affecting the polarization mode coupling and numerically solve the coupled-mode equations for representative states of strain. We show in which way shear strain affects the optical response of a grating and demonstrate how the fiber's beat length influences this characteristic.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:45 ,  Issue: 5 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.