By Topic

Optimal Geometric Control of Power Buffers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weaver, W.W. ; Dept. of Electr. & Comput. Eng., Michigan Technol. Univ., Houghton, MI ; Krein, P.T.

Modern power electronics are capable of regulating loads with bandwidths so high that they essentially enforce constant power on millisecond timescales and contribute to system-wide voltage instability problems. Active front-end control of such loads that implement a power buffer function has been shown to mitigate instability, but has relied on complicated hybrid control techniques. This paper proposes a geometric control surface that implements the power buffer function by coupling the input impedance to the stored energy and by altering the source and load dynamics. The surface is derived from optimal control theory where importance is placed on maintaining continuous input impedance and retaining as much local energy as possible. The optimal control is a tradeoff between the needs of the system and the needs of the load. This paper introduces a geometric control surface based on a change of variables that simply and effectively implements a power buffer function. The formulation and implementation of the optimal surface are presented, in addition to experimental validation of the new power buffer control law.

Published in:

Power Electronics, IEEE Transactions on  (Volume:24 ,  Issue: 5 )