By Topic

Low-Ripple and Dual-Phase Charge Pump Circuit Regulated by Switched-Capacitor-Based Bandgap Reference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming-Hsin Huang ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu ; Po-Chin Fan ; Ke-Horng Chen

This paper proposes a low-ripple and dual-phase charge pump circuit regulated by switched-capacitor-based bandgap reference. Due to design of a buffer stage, a system can have better bandwidth and phase margin, and thus, the transient response and driving capability can be improved. Besides, the dual-phase control can reduce the output voltage ripple by means of only one closed-loop regulation in order to improve the power conversion efficiency. Besides, the proposed automatic body switching (ABS) circuit can efficiently drive the bulk of the power p-type MOSFETs to avoid leakage and potential latch-up. Usually, the regulated charge pump circuit needs a bandgap reference circuit to provide a temperature-independent reference voltage. The switched-capacitor-based bandgap reference circuit is utilized to regulate the output voltage. This chip was fabricated by Taiwan Semiconductor Manufacturing Company (TSMC) 0.35 mum 3.3 V/5 V 2P4M CMOS technology. The input voltage range varies from 2.9 to 5.5 V, and the output voltage is regulated at 5 V. Experimental results demonstrate that the charge pump can provide 48 mA maximum load current without any oscillation problems.

Published in:

Power Electronics, IEEE Transactions on  (Volume:24 ,  Issue: 5 )