By Topic

A distributed Kalman filter for actuator fault estimation of deep space formation flying satellites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. M. Azizi ; Department of Electrical and Computer Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada ; K. Khorasani

In this paper, a new distributed Kalman filter scheme is proposed to estimate actuator faults for deep space formation flying satellites. The method can also be applied to large-scale systems such as sensor networks and power systems. For a hierarchical large-scale system, the overlapping block-diagonal state space (OBDSS) representation of the system is transformed into our proposed constrained-state block-diagonal state space (CSBDSS) model. The proposed model becomes purely diagonal which simplifies and allows the distributed implementation of the Kalman filters. The constrained-state condition needs to be satisfied at each Kalman filtering iteration which is shown to be equivalent to solving local constrained optimization cost functions. Simulation results presented confirm the effectiveness of our proposed analytical work.

Published in:

Systems Conference, 2009 3rd Annual IEEE

Date of Conference:

23-26 March 2009