By Topic

Application of Volterra series to the problem of self-oscillating mixer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chew, S.T. ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Itoh, T.

A new approach to the nonlinear problem of self-oscillating mixer has been investigated using Volterra series. The circuit under consideration is first converted into a one-port network. The input and coupling impedances of various ports are represented by Volterra kernels generated by nonlinear current method. Advantage of this approach is that the phase relationships among signals are not required for the analysis. Also, no stability criterion testing is needed to ensure convergence to the correct solution numerically. It is computationally efficient and mathematically simple, yet reasonably accurate. Measured results with respect to RF frequency and power show good agreement with that calculated

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:44 ,  Issue: 2 )