By Topic

MIMO Detection Methods: How They Work [Lecture Notes]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The goal of this lecture has been to provide an overview of approaches, in the communications receiver context. Which method is the best in practice? This depends much on the purpose of solving : what error rate can be tolerated, what is the ultimate measure of performance (e.g., frame-error-rate, worst-case complexity, or average complexity), and what computational platform is used. Additionally, the bits in s may be part of a larger code word and different s vectors in that code word may either see the same H (slow fading) or many different realizations of H (fast fading). This complicates the picture, because notions that are important in slow fading (such as spatial diversity) are less important in fast fading, where diversity is provided anyway by time variations. Detection for MIMO has been an active field for more than ten years, and this research will probably continue for some time.

Published in:

Signal Processing Magazine, IEEE  (Volume:26 ,  Issue: 3 )