By Topic

Enhanced-Convergence Normalized LMS Algorithm[DSP Tips & Tricks]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Least mean square (LMS) algorithms have found great utility in many adaptive filtering applications. This article shows how the traditional constraints placed on the update gain of normalized LMS algorithms are overly restrictive. We present relaxed update gain constraints that significantly improve normalized LMS algorithm convergence speed.

Published in:

Signal Processing Magazine, IEEE  (Volume:26 ,  Issue: 3 )