Cart (Loading....) | Create Account
Close category search window

Impairment-Based 3-D Robotic Intervention Improves Upper Extremity Work Area in Chronic Stroke: Targeting Abnormal Joint Torque Coupling With Progressive Shoulder Abduction Loading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ellis, M.D. ; Dept. of Phys. Therapy & Human Movement Sci., Northwestern Univ., Chicago, IL ; Sukal-Moulton, T.M. ; Dewald, J.P.A.

The implementation of a robotic system ( ACT3D ) that allowed for a quantitative measurement of abnormal joint torque coupling in chronic stroke survivors and, most importantly, a quantitative means of initiating and progressing an impairment-based intervention, is described. Individuals with chronic moderate to severe stroke (n = 8) participated in this single-group pretest-posttest design study. Subjects were trained over eight weeks by progressively increasing the level of shoulder abduction loading experienced by the participant during reaching repetitions as performance improved. Reaching work area was evaluated pre- and postintervention for ten different shoulder abduction loading levels along with isometric single-joint strength and a qualitative clinical assessment of impairment. There was a significant effect of session (pre versus post) with an increase in reaching work area, despite no change in single-joint strength. This data suggests that specifically targeting the abnormal joint torque coupling impairment through progressive shoulder abduction loading is an effective strategy for improving reaching work area following hemiparetic stroke. Application of robotics, namely, the ACT3D , allowed for quantitative control of the exercise parameters needed to directly target the synergistic coupling impairment. The targeted reduction of abnormal joint torque coupling is likely the key factor explaining the improvements in reaching range of motion achieved with this intervention.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 3 )

Date of Publication:

June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.