By Topic

Expression-Invariant Face Recognition With Constrained Optical Flow Warping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chao-Kuei Hsieh ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu ; Shang-Hong Lai ; Yung-Chang Chen

Face recognition is one of the most intensively studied topics in computer vision and pattern recognition, but few are focused on how to robustly recognize expressional faces with one single training sample per class. In this paper, we modify the regularization-based optical flow algorithm by imposing constraints on some given point correspondences to compute precise pixel displacements and intensity variations. By using the optical flow computed for the input expression variant face with respect to a reference neutral face image, we remove the expression from the face image by elastic image warping to recognize the subject with facial expression. Experimental validation is given to show that the proposed expression normalization algorithm significantly improves the accuracy of face recognition on expression variant faces.

Published in:

Multimedia, IEEE Transactions on  (Volume:11 ,  Issue: 4 )