By Topic

A unified approach for modeling longitudinal and failure time data, with application in medical monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Berzuini, Carlo ; Dipartimento di Inf. e Sistemistica, Pavia Univ., Italy ; Larizza, C.

This paper considers biomedical problems in which a sample of subjects, for example clinical patients, is monitored through time for purposes of individual prediction. Emphasis is on situations in which the monitoring generates data both in the form of a time series and in the form of events (development of a disease, death, etc.) observed on each subject over specified intervals of time. A Bayesian approach to the combined modeling of both types of data for purposes of prediction is presented. The proposed method merges ideas of Bayesian hierarchical modeling, nonparametric smoothing of time series data, survival analysis, and forecasting into a unified framework. Emphasis is on flexible modeling of the time series data based on stochastic process theory. The use of Markov chain Monte Carlo simulation to calculate the predictions of interest is discussed. Conditional independence graphs are used throughout for a clear presentation of the models. An application in the monitoring of transplant patients is presented

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 2 )