By Topic

Learning Context-Sensitive Shape Similarity by Graph Transduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiang Bai ; Dept. of Electron. & Inf. Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Yang, Xingwei ; Latecki, L.J. ; Wenyu Liu
more authors

Shape similarity and shape retrieval are very important topics in computer vision. The recent progress in this domain has been mostly driven by designing smart shape descriptors for providing better similarity measure between pairs of shapes. In this paper, we provide a new perspective to this problem by considering the existing shapes as a group, and study their similarity measures to the query shape in a graph structure. Our method is general and can be built on top of any existing shape similarity measure. For a given similarity measure, a new similarity is learned through graph transduction. The new similarity is learned iteratively so that the neighbors of a given shape influence its final similarity to the query. The basic idea here is related to PageRank ranking, which forms a foundation of Google Web search. The presented experimental results demonstrate that the proposed approach yields significant improvements over the state-of-art shape matching algorithms. We obtained a retrieval rate of 91.61 percent on the MPEG-7 data set, which is the highest ever reported in the literature. Moreover, the learned similarity by the proposed method also achieves promising improvements on both shape classification and shape clustering.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 5 )