Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Observing Human-Object Interactions: Using Spatial and Functional Compatibility for Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gupta, A. ; Dept. of Comput. Sci., Univ. of Maryland-Coll. Park, College Park, MD, USA ; Kembhavi, A. ; Davis, L.S.

Interpretation of images and videos containing humans interacting with different objects is a daunting task. It involves understanding scene or event, analyzing human movements, recognizing manipulable objects, and observing the effect of the human movement on those objects. While each of these perceptual tasks can be conducted independently, recognition rate improves when interactions between them are considered. Motivated by psychological studies of human perception, we present a Bayesian approach which integrates various perceptual tasks involved in understanding human-object interactions. Previous approaches to object and action recognition rely on static shape or appearance feature matching and motion analysis, respectively. Our approach goes beyond these traditional approaches and applies spatial and functional constraints on each of the perceptual elements for coherent semantic interpretation. Such constraints allow us to recognize objects and actions when the appearances are not discriminative enough. We also demonstrate the use of such constraints in recognition of actions from static images without using any motion information.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 10 )