Cart (Loading....) | Create Account
Close category search window
 

Motion Estimation for Nonoverlapping Multicamera Rigs: Linear Algebraic and L Geometric Solutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jae-Hak Kim ; Dept. of Comput. Sci., Queen Mary, Univ. of London, London, UK ; Hongdong Li ; Hartley, R.

We investigate the problem of estimating the ego-motion of a multicamera rig from two positions of the rig. We describe and compare two new algorithms for finding the 6 degrees of freedom (3 for rotation and 3 for translation) of the motion. One algorithm gives a linear solution and the other is a geometric algorithm that minimizes the maximum measurement error-the optimal L solution. They are described in the context of the General Camera Model (GCM), and we pay particular attention to multicamera systems in which the cameras have nonoverlapping or minimally overlapping field of view. Many nonlinear algorithms have been developed to solve the multicamera motion estimation problem. However, no linear solution or guaranteed optimal geometric solution has previously been proposed. We made two contributions: 1) a fast linear algebraic method using the GCM and 2) a guaranteed globally optimal algorithm based on the L geometric error using the branch-and-bound technique. In deriving the linear method using the GCM, we give a detailed analysis of degeneracy of camera configurations. In finding the globally optimal solution, we apply a rotation space search technique recently proposed by Hartley and Kahl. Our experiments conducted on both synthetic and real data have shown excellent results.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 6 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.