By Topic

The Sum-over-Paths Covariance Kernel: A Novel Covariance Measure between Nodes of a Directed Graph

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mantrach, A. ; IRIDIA, Univ. Libre de Bruxelles, Brussels, Belgium ; Luh Yen ; Callut, J. ; Francoisse, K.
more authors

This work introduces a link-based covariance measure between the nodes of a weighted directed graph, where a cost is associated with each arc. To this end, a probability distribution on the (usually infinite) countable set of paths through the graph is defined by minimizing the total expected cost between all pairs of nodes while fixing the total relative entropy spread in the graph. This results in a Boltzmann distribution on the set of paths such that long (high-cost) paths occur with a low probability while short (low-cost) paths occur with a high probability. The sum-over-paths (SoP) covariance measure between nodes is then defined according to this probability distribution: two nodes are considered as highly correlated if they often co-occur together on the same - preferably short - paths. The resulting covariance matrix between nodes (say n nodes in total) is a Gram matrix and therefore defines a valid kernel on the graph. It is obtained by inverting an ntimes n matrix depending on the costs assigned to the arcs. In the same spirit, a betweenness score is also defined, measuring the expected number of times a node occurs on a path. The proposed measures could be used for various graph mining tasks such as computing betweenness centrality, semi-supervised classification of nodes, visualization, etc., as shown in Section 7.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 6 )