By Topic

Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We recently introduced watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, our main contribution is a thinning paradigm from which we derive three algorithmic watershed cut strategies: The first one is well suited to parallel implementations, the second one leads to a flexible linear-time sequential implementation, whereas the third one links the watershed cuts and the popular flooding algorithms. We state that watershed cuts preserve a notion of contrast, called connection value, on which several morphological region merging methods are (implicitly) based. We also establish the links and differences between watershed cuts, minimum spanning forests, shortest path forests, and topological watersheds. Finally, we present illustrations of the proposed framework to the segmentation of artwork surfaces and diffusion tensor images.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 5 )