By Topic

A Unified Framework for Providing Recommendations in Social Tagging Systems Based on Ternary Semantic Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Symeonidis, P. ; Dept. of Inf., Aristotle Univ., Thessaloniki, Greece ; Nanopoulos, A. ; Manolopoulos, Y.

Social tagging is the process by which many users add metadata in the form of keywords, to annotate and categorize items (songs, pictures, Web links, products, etc.). Social tagging systems (STSs) can provide three different types of recommendations: They can recommend 1) tags to users, based on what tags other users have used for the same items, 2) items to users, based on tags they have in common with other similar users, and 3) users with common social interest, based on common tags on similar items. However, users may have different interests for an item, and items may have multiple facets. In contrast to the current recommendation algorithms, our approach develops a unified framework to model the three types of entities that exist in a social tagging system: users, items, and tags. These data are modeled by a 3-order tensor, on which multiway latent semantic analysis and dimensionality reduction is performed using both the higher order singular value decomposition (HOSVD) method and the kernel-SVD smoothing technique. We perform experimental comparison of the proposed method against state-of-the-art recommendation algorithms with two real data sets ( and BibSonomy). Our results show significant improvements in terms of effectiveness measured through recall/precision.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 2 )