By Topic

Filter-Based Data Partitioning for Training Multiple Classifier Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dara, R.A. ; R&D, Res. In Motion, Ltd., Guelph, ON, Canada ; Makrehchi, M. ; Kamel, M.S.

Data partitioning methods such as bagging and boosting have been extensively used in multiple classifier systems. These methods have shown a great potential for improving classification accuracy. This study is concerned with the analysis of training data distribution and its impact on the performance of multiple classifier systems. In this study, several feature-based and class-based measures are proposed. These measures can be used to estimate statistical characteristics of the training partitions. To assess the effectiveness of different types of training partitions, we generated a large number of disjoint training partitions with distinctive distributions. Then, we empirically assessed these training partitions and their impact on the performance of the system by utilizing the proposed feature-based and class-based measures. We applied the findings of this analysis and developed a new partitioning method called "Clustering, Declustering, and Selection" (CDS). This study presents a comparative analysis of several existing data partitioning methods including our proposed CDS approach.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 4 )