Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Multiresolution Mean Shift Clustering Algorithm for Shape Interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hung-Kuo Chu ; Comput. Graphics Group, Nat. Cheng-Kung Univ., Tainan, Taiwan ; Tong-Yee Lee

In this paper, we solve the problem of 3D shape interpolation with significant pose variation. For an ideal 3D shape interpolation, especially the articulated model, the shape should follow the movement of the underlying articulated structure and be transformed in a way that is as rigid as possible. Given input shapes with compatible connectivity, we propose a novel multiresolution mean shift (MMS) clustering algorithm to automatically extract their near-rigid components. Then, by building the hierarchical relationship among extracted components, we compute a common articulated structure for these input shapes. With the aid of this articulated structure, we solve the shape interpolation by combining 1) a global pose interpolation of near-rigid components from the source shape to the target shape with 2) a local gradient field interpolation for each pair of components, followed by solving a Poisson equation in order to reconstruct an interpolated shape. As a result, an aesthetically pleasing shape interpolation can be generated, with even the poses of shapes varying significantly. In contrast to a recent state-of-the-art work (Kilian et al., 2007), the proposed approach can achieve comparable or even better results and have better computational efficiency as well.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:15 ,  Issue: 5 )