We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Toward Automated Anomaly Identification in Large-Scale Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhiling Lan ; Dept. of Comput. Sci., Illinois Inst. of Technol., Chicago, IL, USA ; Ziming Zheng ; Yawei Li

When a system fails to function properly, health-related data are collected for troubleshooting. However, it is challenging to effectively identify anomalies from the voluminous amount of noisy, high-dimensional data. The traditional manual approach is time-consuming, error-prone, and even worse, not scalable. In this paper, we present an automated mechanism for node-level anomaly identification in large-scale systems. A set of techniques is presented to automatically analyze collected data: data transformation to construct a uniform data format for data analysis, feature extraction to reduce data size, and unsupervised learning to detect the nodes acting differently from others. Moreover, we compare two techniques, principal component analysis (PCA) and independent component analysis (ICA), for feature extraction. We evaluate our prototype implementation by injecting a variety of faults into a production system at NCSA. The results show that our mechanism, in particular, the one using ICA-based feature extraction, can effectively identify faulty nodes with high accuracy and low computation overhead.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 2 )