Cart (Loading....) | Create Account
Close category search window
 

Reconfigurable Computing Approach for Tate Pairing Cryptosystems over Binary Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chang Shu ; Marvell Technol. Group Ltd., Santa Clara, CA, USA ; Soonhak Kwon ; Gaj, K.

Tate-pairing-based cryptosystems, because of their ability to be used in multiparty identity-based key management schemes, have recently emerged as an alternative to traditional public key cryptosystems. Due to the inherent parallelism of the existing pairing algorithms, high performance can be achieved via hardware realizations. Three schemes for Tate pairing computations have been proposed in the literature: cubic elliptic, binary elliptic, and binary hyperelliptic. In this paper, we propose a new FPGA-based architecture of the Tate-pairing-based computation over binary fields. Even though our field sizes are larger than in the architectures based on cubic elliptic curves or binary hyperelliptic curves with the same security strength, nevertheless fewer multiplications in the underlying field need to be performed. As a result, the computational latency for a pairing computation has been reduced, and our implementation runs 2-20 times faster than the equivalent implementations of other pairing-based schemes at the same level of security strength. Furthermore, we ported our pairing designs for eight field sizes ranging from 239 to 557 bits to the reconfigurable computer, SGI Altix 4700 supported by Silicon Graphics, Inc., and performance and cost are demonstrated.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.