Cart (Loading....) | Create Account
Close category search window
 

Concurrent Error Detection in Finite-Field Arithmetic Operations Using Pipelined and Systolic Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bayat-Sarmadi, S. ; Univ. of Waterloo, Waterloo, ON, Canada ; Hasan, M.A.

In this work, we consider detection of errors in polynomial, dual, and normal bases arithmetic operations. Error detection is performed by recomputing with the shifted operand method, while the operation unit is in use. This scheme is efficient for pipelined architectures, particularly systolic arrays. Additionally, one semisystolic multiplier for each of the polynomial, dual, type I, and type II optimal normal bases is presented. The results show that for having better or similar space and time overheads compared to a number of related previous work, the multipliers have generally a higher error-detection capability, e.g., the error-detection capability of the RESO-based scheme for single and multiple stuck-at faults in a polynomial basis multiplier is 100 percent. Finally, we also comment on how RESO can be used for concurrent error correction to deal with transient faults.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 11 )

Date of Publication:

Nov. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.