By Topic

Leveraging Access Locality for the Efficient Use of Multibit Error-Correcting Codes in L2 Cache

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongbin Sun ; Xi''an Jiaotong Univ., Xi''an, China ; Nanning Zheng ; Tong Zhang

It is almost evident that SRAM-based cache memories will be subject to a significant degree of parametric random defects if one wants to leverage the technology scaling to its full extent. Although strong multibit error-correcting codes (ECC) appear to be a natural choice to handle a large number of random defects, investigation of their applications in cache remains largely missing arguably because it is commonly believed that multibit ECC may incur prohibitive performance degradation and silicon/energy cost. By developing a cost-effective L2 cache architecture using multibit ECC, this paper attempts to show that, with appropriate cache architecture design, this common belief may not necessarily hold true for L2 cache. The basic idea is to supplement a conventional L2 cache core with several special-purpose small caches/buffers, which can greatly reduce the silicon cost and minimize the probability of explicitly executing multibit ECC decoding on the cache read critical path, and meanwhile, maintain soft error tolerance. Experiments show that, at the random defect density of 0.5 percent, this design approach can maintain almost the same instruction per cycle (IPC) performance over a wide spectrum of benchmarks compared with ideal defect-free L2 cache, while only incurring less than 3 percent of silicon area overhead and 36 percent power consumption overhead.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 10 )