By Topic

TCP transmission rate control mechanism based on channel utilization and contention ratio in AD hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xinming Zhang ; is with the Department of Computer Science and Technology, University of Science and Technology of China (USTC), Hefei, 230027, P.R.China (e-mail: ; Nana Li ; Wenbo Zhu ; Dan Keun Sung

In ad hoc networks, both contention and congestion can severely affect the performance of TCP. In our work, we first show that the over-injection of conventional TCP window mechanism results in severe contentions, and medium contentions cause network congestion. Furthermore, introducing two metrics, channel utilization (CU) and contention ratio (CR), we characterize the network status. Then, based on these two metrics, we propose a new TCP transmission rate control mechanism based on Channel utilization and Contention ratio (TCPCC). In this mechanism, each node collects the information about the network busy status and determines the CU and CR accordingly. The CU and CR values fed back through ACK are ultimately determined by the bottleneck node along the flow. The TCP sender controls its transmission rate based on the feedback information. Simulation results show that the proposed TCPCC mechanism significantly outperforms the conventional TCP mechanism and the TCP contention control mechanism in terms of throughput and end-to-end delay.

Published in:

IEEE Communications Letters  (Volume:13 ,  Issue: 4 )