Cart (Loading....) | Create Account
Close category search window
 

MEMS: small machines for the microelectronics age

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Koester, D.A. ; MCNC MEMS Technol. Applications Center, Research Triangle Park, NC, USA ; Markus, K.W. ; Walters, M.D.

In the past few years, the micro-electromechanical systems (MEMS) industry has exceeded the $1-billion-a-year mark. Some economic forecasters estimate that the industry will surpass $14 billion by the year 2000. The reason for this tremendous growth is the enabling nature of MEMS, which give engineers and researchers the tools to build things that have been impossible or prohibitively expensive with other techniques. MEMS are micron- to millimeter-scale devices that can be fabricated as discrete devices or in large arrays. MEMS borrow much of their technology from integrated circuit (IC) manufacturing, providing three-fold benefits: miniaturization, multiplicity and microelectronics. First, miniaturization of the devices is inherent in the processing techniques. Modern microelectronics fabrication techniques are designed to build submicron-scale devices. By using the same techniques, engineers can easily leverage this technology to produce MEMS that are orders of magnitude smaller than their macroworld counterparts. Second, the use of photolithography techniques makes producing thousands or even millions of copies of a single device easy. Thus, single devices can be arrayed into systems to produce an effect impossible with discrete devices. Finally, because MEMS technology is so similar to IC fabrication technology, MEMS are integrable with microelectronics

Published in:

Computer  (Volume:29 ,  Issue: 1 )

Date of Publication:

Jan 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.