By Topic

Aggregation With Fragment Retransmission for Very High-Speed WLANs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tianji Li ; Hamilton Inst., Nat. Univ. of Ireland, Maynooth ; Qiang Ni ; Malone, D. ; Leith, D.
more authors

In upcoming very high-speed wireless LANs (WLANs), the physical (PHY) layer rate may reach 600 Mbps. To achieve high efficiency at the medium access control (MAC) layer, we identify fundamental properties that must be satisfied by any CSMA-/CA-based MAC layers and develop a novel scheme called aggregation with fragment retransmission (AFR) that exhibits these properties. In the AFR scheme, multiple packets are aggregated into and transmitted in a single large frame. If errors happen during the transmission, only the corrupted fragments of the large frame are retransmitted. An analytic model is developed to evaluate the throughput and delay performance of AFR over noisy channels and to compare AFR with similar schemes in the literature. Optimal frame and fragment sizes are calculated using this model. Transmission delays are minimized by using a zero-waiting mechanism where frames are transmitted immediately once the MAC wins a transmission opportunity. We prove that zero-waiting can achieve maximum throughput. As a complement to the theoretical analysis, we investigate the impact of AFR on the performance of realistic application traffic with diverse requirements by simulations. We have implemented the AFR scheme in the NS-2 simulator and present detailed results for TCP, VoIP, and HDTV traffic. The AFR scheme described was developed as part of the IEEE 802.11n working group work. The analysis presented here is general enough to be extended to proposed schemes in the upcoming 802.11n standard. Trends indicated in this paper should extend to any well-designed aggregation schemes.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:17 ,  Issue: 2 )