By Topic

An Experimental Validation of a Wavelength-Striped, Packet Switched, Optical Interconnection Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shacham, A. ; Aprius Inc., Sunnyvale, CA ; Bergman, K.

We experimentally validate a complete optical packet switched interconnection network, implementing the SPINet architecture. The scalable photonic integrated network (SPINet) architecture capitalizes on wavelength division multiplexing (WDM) to provide very large transmission bandwidths, simplify network design, and reduce the network's power dissipation. Contention resolution is performed in the optical domain, and a novel physical layer acknowledgement protocol is employed to mitigate the associated latency and performance penalties. Moreover, the SPINet architecture is specifically designed to enable on-chip integration by not using any kind of optical delay lines. Experiments presented include a complete functionality verification, error-free routing of 80 Gb/s wavelength-striped optical packets (8 wavelengths each modulated at 10 Gb/s) with a bit-error rate (BER) better than 10-12, and novel performance-enhancement techniques such as path adjustments and load balancing.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 7 )