By Topic

Field Trial of 640-Gbit/s-Throughput, Granularity-Flexible Optical Network Using Packet-Selective ROADM Prototype

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kataoka, N. ; Res. Dept. 1, Nat. Inst. of Inf. & Commun. Technol., Koganei ; Sone, K. ; Wada, N. ; Aoki, Y.
more authors

Reconfigurable optical add/drop multiplexers (ROADMs) are able to provide flexible wavelength path provisioning in wavelength division multiplexing (WDM) networks. However, the capability of conventional ROADMs is limited to handling wavelength paths, and it does not support fine granularity in add/drop multiplexing of packets. Recently, we have proposed and demonstrated a packet-selective ROADM that combines an acoustooptic wavelength-tunable filter (AOTF) and an optical packet ADM (PADM) using optical code label processing. It provides more efficient utilization of wavelengths than conventional ROADMs. However, the bit rate of the demonstration was limited up to 10 Gbit/s. In this paper, we newly develop a label-selectivity-enhanced optical en/decoder, which allows the optical label recognition with 40-Gbit/s nonreturn-to-zero (NRZ) data packets, and a wide pass-band AOTF for 40-Gbit/s signals. Furthermore, we develop 640-Gbit/s throughput, packet-selective ROADM prototype, and demonstrate a field trial of granularity-flexible 3-node optical network over 173 km. error-free packet ADMs (error rate of under 10-12) for all 16-wavelength channels at all nodes are obtained.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 7 )