Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Data-Mining Approach for Investigating Social and Economic Geographical Dynamics of \beta -Thalassemia's Spread

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Akay, A. ; Spaulding Rehabilitation Hosp., Boston, MA, USA ; Dragomir, A. ; Yardimci, A. ; Canatan, D.
more authors

beta-Thalassemia is an anemic genetic disorder that remains a major global health issue, especially in the globalized era where public health, economics, and education are tightly interwoven. Previous studies have examined the disease's rate and heredity. This study analyzed beta-thalassemia's socioeconomic geography and how it affects the afflicted population. We processed survey data and performed data mining using self-organizing maps to identify underlying data structure. We hypothesized that certain variables mark subgroups within the affected population and we aimed at identifying these subgroups and used a correlation-based measure to assess the variable's importance to the subgroup's distinction. The population's education level was one of the major factors that divided it into different subgroups. Our study showed that recurring patterns of specific variables separated the affected population into disparate subgroups based on their response to questionnaires. Future studies can use such tools to delve deeper into how other variables (e.g. socioeconomic and genomic) can identify subgroups within larger affected populations.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:13 ,  Issue: 5 )