By Topic

Use of Kernel Functions in Artificial Immune Systems for the Nonlinear Classification Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ozsen, S. ; Dept. of Electr. & Electron. Eng., Selcuk Univ., Konya, Turkey ; Gunes, S. ; Kara, S. ; Latifoglu, F.

Due to the fact that there exist only a small number of complex systems in artificial immune systems (AISs) that solve nonlinear problems, there is a need to develop nonlinear AIS approaches that would be among the well-known solution methods. In this study, we developed a kernel-based AIS to compensate for this deficiency by providing a nonlinear structure via transformation of distance calculations in the clonal selection models of classical AIS to kernel space. Applications of the developed system were conducted on Statlog heart disease dataset, which was taken from the University of California, Irvine Machine-Learning Repository, and on Doppler sonograms to diagnose atherosclerosis disease. The system obtained a classification accuracy of 85.93% for the Statlog heart disease dataset, while it achieved a 99.09% classification success for the Doppler dataset. With these results, our system seems to be a potential solution method, and it may be considered as a suitable method for hard nonlinear classification problems.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:13 ,  Issue: 4 )