Cart (Loading....) | Create Account
Close category search window
 

Decay Properties of Restricted Isometry Constants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Blanchard, J.D. ; Dept. of Math., Univ. of Utah, Salt Lake City, UT ; Cartis, C. ; Tanner, J.

Many sparse approximation algorithms accurately recover the sparsest solution to an underdetermined system of equations provided the matrix's restricted isometry constants (RICs) satisfy certain bounds. There are no known large deterministic matrices that satisfy the desired RIC bounds; however, members of many random matrix ensembles typically satisfy RIC bounds. This experience with random matrices has colored the view of the RICs' behavior. By modifying matrices assumed to have bounded RICs, we construct matrices whose RICs behave in a markedly different fashion than the classical random matrices; RICs can satisfy desirable bounds and also take on values in a narrow range.

Published in:

Signal Processing Letters, IEEE  (Volume:16 ,  Issue: 7 )

Date of Publication:

July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.