By Topic

Efficient BISR Techniques for Embedded Memories Considering Cluster Faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shyue-Kung Lu ; Dept. of Electron. Eng., Fu Jen Catholic Univ., Taipei, Taiwan ; Chun-Lin Yang ; Yuang-Cheng Hsiao ; Cheng-Wen Wu

Instead of the traditional spare row/column redundancy architectures, block-based redundancy architectures are proposed in this paper. The redundant rows/columns are divided into row/column blocks. Therefore, the repair of faulty memory cells can be performed at the row/column-block level. Moreover, the redundant row/column blocks can be used to replace faulty cells anywhere in the memory array. This global characteristic is helpful for repairing cluster faults. The proposed redundancy architecture can be easily integrated with the embedded memory cores. Based on the proposed global redundancy architecture, a heuristic modified essential spare pivoting (MESP) algorithm suitable for built-in implementation is also proposed. According to experimental results, the area overhead for implementing the MESP algorithm is very low. Due to efficient usage of redundancy, the manufacturing yield, repair rate, and reliability can be improved significantly.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 2 )