By Topic

High-Dimensional Statistical Measure for Region-of-Interest Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sylvain Boltz ; Lab. I3S, Univ. de Nice-Sophia Antipolis/CNRS, Sophia Antipolis ; Éric Debreuve ; Michel Barlaud

This paper deals with region-of-interest (ROI) tracking in video sequences. The goal is to determine in successive frames the region which best matches, in terms of a similarity measure, a ROI defined in a reference frame. Some tracking methods define similarity measures which efficiently combine several visual features into a probability density function (PDF) representation, thus building a discriminative model of the ROI. This approach implies dealing with PDFs with domains of definition of high dimension. To overcome this obstacle, a standard solution is to assume independence between the different features in order to bring out low-dimension marginal laws and/or to make some parametric assumptions on the PDFs at the cost of generality. We discard these assumptions by proposing to compute the Kullback-Leibler divergence between high-dimensional PDFs using the k th nearest neighbor framework. In consequence, the divergence is expressed directly from the samples, i.e., without explicit estimation of the underlying PDFs. As an application, we defined 5, 7, and 13-dimensional feature vectors containing color information (including pixel-based, gradient-based and patch-based) and spatial layout. The proposed procedure performs tracking allowing for translation and scaling of the ROI. Experiments show its efficiency on a movie excerpt and standard test sequences selected for the specific conditions they exhibit: partial occlusions, variations of luminance, noise, and complex motion.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 6 )