Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Strategic Generation Capacity Expansion Planning With Incomplete Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianhui Wang ; Div. of Decision & Inf. Sci., Argonne Nat. Lab., Argonne, IL ; Shahidehpour, M. ; Zuyi Li ; Botterud, A.

To study the competitive behavior among individual generating companies (GENCOs), an incomplete information game model is proposed in this paper in which each GENCO is modeled as an agent. Each agent makes strategic generation capacity expansion decisions based on its incomplete information on other GENCOs. The formation of this game model falls into a bi-level optimization problem. The upper level of this problem is the GENCOs' own decision on optimal planning strategies and energy/reserve bidding strategies. The lower-level problem is the ISO's market clearing problem that minimizes the cost to supply the load, which yields price signals for GENCOs to calculate their own payoffs. A co-evolutionary algorithm combined with pattern search is proposed to optimize the search for the Nash equilibrium of the competition game with incomplete information. The Nash equilibrium is obtained if all GENCOs reach their maximum expected payoff assuming the planning strategies of other GENCOs' remain unchanged. The physical withholding of capacity is considered in the energy market and the Herfindahl-Hirschman index is utilized to measure the market concentration. The competitive behaviors are analyzed in three policy scenarios based on different market rules for reserve procurement and compensation.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 2 )