By Topic

ABRM: Adaptive  \beta -Ratio Modulation for Process-Tolerant Ultradynamic Voltage Scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Myeong-Eun Hwang ; Intel, Hillsboro, OR, USA ; Roy, K.

Subthreshold operation of digital circuits has emerged as a promising approach to achieve ultralow power dissipation. However, extensive application of subthreshold logic is limited due to low performance and high susceptibility to process variation (PV). This paper proposes a PV-tolerant ultradynamic voltage scaling (UDVS) system where performance requirements dictate whether the devices will work in the subthreshold or superthreshold region. Due to different mechanisms of current conduction, it is necessary to use different P/N ratios for different regions of operation to improve circuit robustness, performance, and power. With an analytical model of circuit robustness, we present an adaptive body-biasing technique to dynamically adjust the ??-ratio depending on the operating region. Measurements show that our methodology improves the dynamic range of operation the circuits-from 1.2 V all the way down to 85 mV consuming 40 nW (at 85 mV) of power for an 8 × 8 finite-impulse response filter fabricated in a 0.13-??m technology, and can salvage circuits which otherwise would fail to operate due to device mismatches and skewed P/N ratios.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 2 )