By Topic

On the marginal distribution of the eigenvalues of wishart matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alberto Zanella ; IEIIT-BO/CNR, Univ. of Bologna, Bologna ; Marco Chiani ; Moe Z. Win

Random matrices play a crucial role in the design and analysis of multiple-input multiple-output (MIMO) systems. In particular, performance of MIMO systems depends on the statistical properties of a subclass of random matrices known as Wishart when the propagation environment is characterized by Rayleigh or Rician fading. This paper focuses on the stochastic analysis of this class of matrices and proposes a general methodology to evaluate some multiple nested integrals of interest. With this methodology we obtain a closed-form expression for the joint probability density function of k consecutive ordered eigenvalues and, as a special case, the PDF of the lscrth ordered eigenvalue of Wishart matrices. The distribution of the largest eigenvalue can be used to analyze the performance of MIMO maximal ratio combining systems. The PDF of the smallest eigenvalue can be used for MIMO antenna selection techniques. Finally, the PDF the kth largest eigenvalue finds applications in the performance analysis of MIMO singular value decomposition systems.

Published in:

IEEE Transactions on Communications  (Volume:57 ,  Issue: 4 )