By Topic

Effective Design of Optical Code-Division Multiple Access Network Using Random Diagonal Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fadhil, H.A. ; Sch. of Comput. & Commun., Univ. Malaysia Perlis (UniMAP), Perlis ; Aljunid, S.A. ; Ahmed, R.B.

In this paper we study the use of a new code called Random Diagonal (RD) code for Spectral Amplitude Coding (SAC) optical Code Division Multiple Access (CDMA) networks, using Fiber Bragg-Grating (FBG), FBG consists of a fiber segment whose index of reflection varies periodically along its length. RD code is constructed using code level and data level, one of the important properties of this code is that the cross correlation at data level is always zero, which means that Phase intensity Induced Phase (PIIN) is reduced. We find that the performance of the RD code will be better than Modified Frequency Hopping (MFH) and Hadamard codes. It has been observed through simulation and theoretical results that BER for RD code perform significantly better than other codes. Proof-of-principle simulations of encoding with 3 channels, and 10 Gbps data transmission have been successfully demonstrated together with FBG decoding scheme for canceling the code level from SAG-signal.

Published in:

Telecommunication Technologies 2008 and 2008 2nd Malaysia Conference on Photonics. NCTT-MCP 2008. 6th National Conference on

Date of Conference:

26-28 Aug. 2008