By Topic

Guaranteed computation of constraints for safe path planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sebastien Lengagne ; DEMAR : LIRMM - UMR CNRS 5506 / Université Montpellier II / INRIA, 161 rue Ada 34392 Cedex 5 - France ; Nacim Ramdani ; Philippe Fraisse

Path planning issues are often solved via constrained optimization methods but with constraints which must be satisfied over a whole interval of time or space. The use of fast numerical toolboxes implementing state-of-the-art constrained needs to discretize the continous constraints over a time grid. Thus, the obtained solution, in this way, will satisfy the constraints only for time values corresponding to the time grid. Obviously, some constraints could be violated with catastrophic consequences when dealing with, for instance, the balance of humanoid robots. In this paper we introduce a guaranteed discretization method which uses interval analysis to ensure that the constraints are satisfied over the whole time interval. We analyze numerically this method by performing a trajectory generation under constraints dedicated to the motion of the HOAP-3 humanoid robot.

Published in:

2007 7th IEEE-RAS International Conference on Humanoid Robots

Date of Conference:

Nov. 29 2007-Dec. 1 2007