By Topic

Learning object models for whole body manipulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stilman, M. ; Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA ; Nishiwaki, K. ; Kagami, S.

We present a successful implementation of rigid grasp manipulation for large objects moved along specified trajectories by a humanoid robot. HRP-2 manipulates tables on casters with a range of loads up to its own mass. The robot maintains dynamic balance by controlling its center of gravity to compensate for reflected forces. To achieve high performance for large objects with unspecified dynamics the robot learns a friction model for each object and applies it to torso trajectory generation. We empirically compare this method to a purely reactive strategy and show a significant increase in predictive power and stability.

Published in:

Humanoid Robots, 2007 7th IEEE-RAS International Conference on

Date of Conference:

Nov. 29 2007-Dec. 1 2007